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3. Eigenvalues

The eigenvalues for the following six cases of homogeneous
boundary conditions are investigated:

Case 1) H, =0, M4e=0 (14)
The characteristic equation takes the form
818y — 88 =0 (15)

The left-hand side of Eq. (15) is equal to A. The influence
coefficients thus become indefinitely large at the value of the
pressure satisfying Eq. (15). Therefore, it is concluded that
the singularity in the influence coefficients corresponds to the
eigenvalue and, consequently, to the buckling pressure of the
spherical shell segment supported by the edge condition
characterized by Egs. (14).
The stiffness coefficients K;,7,§ = 1,2, are

K;; = 01‘]‘/(011022 — C12C) (16)
01;]' .

where C;; is the co-factor of Cy; in the determinant
A simple calculation shows

CuCa — Cily = (A sine/Eh?) /D) [(71Se" — 8)) —
v cota(viSe — 28] (17)

Hence, A cancels out and K,; is not necessarily zero when
A = 0. The result is not surprising at all, because the buck-
ling deformations oceur in the eigenmode, and, consequently,
ucand B, are linearly related and their ratio cannot be changed
arbitrarily. Therefore, the stiffness coefficients need not
vanish identically.

The boundary condition characterized by Eqs. (14) is quite
unrealistic except for hemispherical shells. As sketched in
Fig. 1, the shell slides and rotates freely on the constraining
surface of conical shape, which becomes horizontal when the
buckling occurs. In the case of the hemispherical shell the
constraining surface is always horizontal. The eigenvalue
p = 0.5 obtained for the hemispherical shell, therefore, cor-
responds to the buckling pressure of the hemispherical shell
with free edge. Because of the similarity of their behavior
near the edge, it can be anticipated that the axially compressed
circular cylindrical shell with free edge can buckle at one-half
the classical buckling pressure. This is the problem dis-
cussed by N. J. Hoff.6

Case (1) Que = 0, My = 0 (18)

where Q. is the component of the edge force in the radial
direction specified by the edge angle a.
Approximation consistent to Eq. (10) results in

Case Qu. = — H, sina (19)

Therefore, in the present approximation, the boundary condi-
tion characterized by Eqs. (18) is identical to that charac-
terized by Egs. (14). The present eigenvalue problem is a
realistic one. Here, the shell slides and rotates freely on the
constraining surface of conical shape during the entire process
of loading and buckling, Fig. 2.

Because of the similarity of their behavior near the edge, the
axisymmetric buckling of conical shells, which can slide and
rotate freely on the constraining surface of conical shape, can
be anticipated to occur at the pressure corresponding to the
eigenvalue of the present boundary value problem. The
corresponding conical shell is sketched by dashed lines in Fig.
2. This conclusion may provide a supplementary explana-
tion to the result of the recent investigation of Baruch,
Harari, Singer.* They obtained the low buckling load of the
conical shell near p = 0.5 for the 883 boundary condition,
which turned out to be similar to the free edge for that
buckling mode.

Case (1) Q. =0, My =0
Case w) H., =0, B.=0
Case () u. =0, My =0
Case (1) 4., =0, B.=0

(20)
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The result of numerical computations showed that p = 1 is
the only eigenvalue for all these cases of boundary conditions.
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Introduection

HE increased speed and capacity of modern computers
is permitting the solution of large nonlinear or optimiza-
tion problems using the Matrix Displacement Method. An
efficient modification procedure is an integral feature of the
required computer programs. When a relatively small por-
tion of the structure is to be modified at one time, or when
convergence difficulties are expected in an iterative approach,
a direct method!® can be recommended. In the original
Argyris approach,’? the changes in values of the elemental
stiffness matrix k are interpreted in terms of initial stresses
or loads. This method normally involves the triangulariza-
tion of a matrix of size equal to the number of changed rows
in k according to the natural element freedoms, and has
special application for the elastoplastic problem, as shown
in Ref. 3. Sobieszczanski?* has presented a competitive
method for the case of successive independent modifications
to a structure. Since the method requires element flexibility
matrices, its use in conjunction with existing Displacement
Method programs would involve considerable programing
effort. Also, this technique is not especially suited to the
elastoplastic problem, where all the previously modified
members must be modified anew after each load increment.
The size of the modifications matrices can often be con-
siderably reduced if changes are made directly with respect
to the global stiffness matrix K of the structure. Earlier at-
tempts in this direction presumed that K was partitioned into
modified and unmodified parts. Even if this transformation

Received February 22, 1971; revision received March 29, 1971.
Index Category: Structural Static Analysis.

* Director. Associate Fellow ATAA.

1 Group Leader of the Dynamic Analysis Team.

1 Senior Member of the Automatic System for Kinematic
Analysis Team.

§ Group Leader of Discretization Team.



1862 ATAA JOURNAL

Column —e=11 19 323539

222
Corresponding RA

Row

Column No.
in Ky

b Stored as
One Dimensional Array

Typical Ky

Fig. 1 Formation of compressed modification matrix.

were only done implicitly, the solution of large out-of-core
problems would involve excessive input-output time. Also,
the recent method of Sack, Carpenter, and Hatch® is not well
adapted o modifications of large structures because 1) it
makes the modifications directly to KX~!, which is extremely
expensive to calculate for large band matrices, 2) it can
only consider the modification of one column of K at a time,
3) the unsymmetrical form of the transformation t:(K~—1)u
in Eq. (3) of Ref. 5 necessitates both forward and back sub-
stitution on u, the latter being very expensive. In the follow-
ing presentation, these disadvantages are overcome to produce
directly the correction in displacements for a structure, where
without prior knowledge, any members are added, deleted or
changed.

Derivation from Matrix Calculus

Consider that the displacements r are calculated for a
structure with global stiffness matrix K under loading system
Ras

Kr = R 1)

The change in displacements ra caused by a change in K of
K is expressed through

(K + Kp)r + 1) =R @)

As illustrated in Fig. 1, the incremental matrix X4 could be
compressed, eliminating zero columns and rows, to form a
reduced incremental matrix Xa of size equal to the number
of changed columns (or rows) in the modified system, via

Ky = B‘f(AS (3)

where b is a Boolean matrix with linearly independent rows,
each of which contains all zeros except for one unit value,
located for each row at the column number, taken in increas-
ing order, where a change in K occurs. Note the ortho-
normal condition

btb =1 4)

However, this relation is strictly not necessary for the sub-
sequent developments. It suffices to remember that the
rows of b are linearly independent. The structure of b en-
ables it to be stored as a one-dimensional array, as seen in
Fig. 1.

The identity of Householder’ for a modified inverse is given
as

(A +XY)"! = A1 — AX¢(I + YATIXH)“IYA-! (5)

where (I + YA™'X?) can be proved nonsingular if both the
original matrix A and the modified matrix (A + X¢Y) are
taken to~be nonsingglar. In the structural problem, set A =
K, X = band Y = Kab in Eq. (5) to give

(K + bKab) 1 = K-t — K-1H(I + RAbK1h1) 1K, bK 1
(6)
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Since the caleulation of the inverse is too expensive for a large
band matrix, Eq. (6) must be multiplied through by R, and
with the help of Eq. (2), the change in displacements ra ob-
tained directly as

TA = —K—"IB‘(I + KASK‘IB‘)_II.{ABI‘ )

The reduced unsymmetric matrix I + ﬁAﬁK"lﬁl) can be
readily shown to be nonsingular, even when K, is singular.

Derivation from Physical Arguments

Due to the change Ka of the stiffness matrix, the displace-
ments r of the unmodified system under a given load R are
incremented by ra. This displacement vector ra may be
derived from additional forces

Ra = Kry ®

applied to the unmodified system. For the load vector Ra
we deduce the condition

KAI‘ =+ Ra + KAK“IRA =0 (9)

by eliminating ra in Eq. (2) via Eq. (8). We observe that
Ra is uniquely determined by Eq. (9). However, the order
of the system of linear equations may be most elegantly re-
duced. To this purpose we set

RAr = B‘ﬁA (10)

where b is the Boolean matrix defined in connection with Eq.
(3).

This means physically that additional forces are only ap-
plied where the corresponding rows of the stiffness matrix are
changed. Introducing Eqs. (10) and (3) into Eq. (9) we find

S‘(KABI + ]iA + ﬁABK_IBtf(A) =0 (11)

Remembering the above definition of b, it is clear, that for
any nonzero Ra, Eq. (10) leads to nonzero Ra. There fol-
Jows that the left-hand side of Eq. (11) vanishes only if the
term enclosed in brackets becomes itself zero. Solving the
remaining linear equation for Rs we obtain

Ra = —(I + RabK1bt) K abr (12)

In contrast to Eq. (9) in Ra, the number of equations is here
equal to the number of modified rows or columns in K. The
possibility of reducing Eq. (9) to the form in Eq. (12), can
also be deduced from the “structure’ of the matrix Ka. Close
examination of Eq. (9) shows that full zero rows must oceur
in Ra corresponding to those in K4, which checks with Eq.
(10). In conjunction with Eqgs. (8) and (10) we finally derive

ra = K71Rp = K_IB‘ﬁA = —K‘lf)’t(l + I&ABK—IB‘) *112A1~)r
(13)
which is seen to be identical to Eq. (7).

Application of Method

The compressed modification matrix Ka can be directly
calculated from the diagonal hypermatrix ks, which contains
in order the matrices of change of elemental stiffness for each
modified element, via

K = dk,d (14)

where the Boolean matrix & has the same number of rows as
the part of the normal Boolean matrix a for the changed ele-
ments. It has as many columns as b has rows, and can be
built from a one row at a time, by searching b for a row ri,

k=86
A k=3 2% k=2

@ @ mﬂ Fig. 2 Example prob-

lem—three series bars.
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identical to the current row in &, and inserting unity at col-
umn 7, of the current row of & Assuming that only modi-
fied elements are considered in a, the following matrix relation

holds
i = abt (15)

giving an alternative method of calculating &.

It is assumed that the original stiffness matrix X has al-
ready been triangularized by the Cholesky method into the
upper triangular matrix u such that

v =K (16)

Using u, a forward substitution process performed on be
(considered as expanded to a standard matrix) produces a
rectangular matrix

Z = (uf)~'bt (1

Finally the symmetric influence matrix of unit changes Q is
defined as

Q=271 (18)
Using the above relations, Eq. (7) can be written as
ra = —u~'Z{ + KaQ) Kabr (19)

The equation can be put in convenient positive definite form
by extracting the matrix Q as a common factor from the
matrix to be inverted, as follows

ra = —u"ZQ-1Q"! 4+ K,)~Kbr (20)

Q is clearly positive definite, and since after certain manipula-
tions the matrix (Q~! + Ka) can also be shown to be positive
definite, pivoting is unnecessary in the triangularization.
The optimal order of calculation in Eq. (20) is clearly 1)
compress r into ¥ = br, and premultiply by Ka to give #/;
2) evaluate matrices Z and Q; 3) triangularize Q, i.g., Ugilg
= Q, also evaluate Q~1; 4) triangularize (Q~* 4 K,) into
fitfi; 5) using results from 3, forward and back-substitute
on ' using @ and then ug, to produce ¥’/; 6) premultiply
£ by Z to produce r’’’; and 7) finally produce ra by back-
substitution on r'’’  ie., —rp = u~lr’’"’. ‘

An operation count assuming a banded K reveals that step
2, namely the evaluation of Z and Q, is usually the most ex-
pensive. However, if only the magnitude of a set of modifi-
cations changes in a later modification step, matrices Z and
Q remain the same as before, and the modification becomes
very cheap. From Eq. (17), it can be appreciated, that if
the modifications occur at the higher numbered nodal points
of the structure, the forward-substitution procedure to form
Z and the resulting caleulation of Q are both performed very
rapidly, as is also the case for the efficient substructure
approach in Ref. 6.

An operation count will now be given for the major part of
the calculations. Assuming that the half-bandwidth B of the
structural stiffness matrix is considerably smaller than the
total number N of unknown displacements, and that the
number of loadings I < B, only steps 2-4 need be con-
sidered. Defining the total number of changed columns in
K as n. and assuming that the changes occur on the average
at the middle nodal point numbers, the number of multiply-
accumulates # is given approximately by

n = NBn./2 4+ Nn2/4 4+ 2n3/3 1)

As the number of operations for retriangularization equals
NB?/2, retriangularization would be cheaper when n. be-
comes greater than about 0.75 B. Of course, n, could be in-
creased beyond this if the changes oceur at higher numbered
nodal points or if only the magnitude of the modifications
changes from a previous step. The indicated operations
1-7 are seen to include mainly matrix multiplication and
triangularization. Since these features are available in most
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general purpose structural programs, the implementation of
the above approach will not require much additional pro-
graming effort.

Space considerations preclude a thorough comparlson of
operation counts for this method with those for existing
methods. However, it may be mentioned that if the method
in Ref. 5 were generalized as above, to enable multiple cor-
rections directly to the displacement matrix, the necessity of
back-substitution would raise the operation count to

= 3NBn./2 + n? (22)

which even at the most favourable limit value of n. = 0.75 B,
implies more than double the operations given in Eq. (21).
It is important to emphasize that the method desecribed
above, like all direct methods presented until now, is ap-
plicable to situations where a relatively small proportion of
the structure is modified: Minor modifications to a large
part of the structure are probably best handled by an iterative
solution of the modified equation system, using the original
displacement vector as starting vector.

Numerical Example

A simple example of three series bars Fig. 2 is presented
to illustrate the formation of the various matrices. For the
original structure, the various matrices are seen to be

3 -3 | 000
=33 A R 100
K — i 6 —6 a1 00
I =66 »T 010
; P2 -2 010
: 2 2 00 1
(23)
Thus
9 —6 0 3 -2 0
K=|-6 8 —2|;u=l0 2 —1| @
0 -2 2 0 0 1
and

0 36
R = [24]; r = [5{‘ (25)
84 96

Consider that ks is increased by 5 to a value of 7. Then using
Eqs. (14) and (15), ks, b and & are calculated to be

[ 5 =57 ¢ [0 107 5_[10
kA‘[—5 5}’ b‘[o 0 1) a‘[o 1] 26)

From Eqgs. (14, 17, and 18), we obtain
0
5 — ] [0.5 0.5]
Z=050} Q=
l: 5 [O 5 l:l 0.5 1

w =[G 000 o =[5 T3]
e+ k=) 7] e

ﬁ=[g —3123(14)1/2]; [ [ 20| @

(@) = [38 f~=[‘ [ ] (30)

thus leading finally to
0 36
ra=—| 0] and r+1s =154 (31)
30 66

e
~



1864 ATAA JOURNAL:

It must be emphasized that the preceding example repre-
sents an extremely inefficient application of the method.
Nevertheless, the accompanying progressive results should
enable the reader to obtain a clearer understanding of the
approach.

Note that after submitting the original manuseript, the
authors received the paper by D. Kavlie and G. H. Powell.?
The reader may be referred to this paper for a most thorough
comparison of current methods. The new method presented
in Tgs. (46-51) of that paper is most elegant, and is the
fastest direct method presented there. However, as in Ref.
5, it contains an unsymmetrical transformation plus back-
substitution, so that the operation count (neglecting load
dependent terms) in Eq. (51), even when reduced by con-
sidering an average distribution of modifications, to

n =~ 3NBn.,/2 + Nn2/4 (32)

implies more than double the operations given in the present
Eq. (21).

References

t Argyris, J. H., “The Matrix Analysis of Structures with Cut-
Outs and Modifications,” Communication to the IX. Interna-
tional Congress of Theoretical and Applied Mechanics (IUTAM ),
Brussels, Sept. 1956, pp. 131-142.

2 Argyris, J. H., “Die Matrizentheorie der Statik,” Ingenicur-
Archiv, Vol. 25, No. 3, 1957.

8 Argyris, J. H. and Scharpf, D. W., “Methods of Elasto-
Plastic Analysis,” Proceedings of the I.8.8.C. Symposium on Finite
Element Techniques at I.8.D., Univ. of Stuttgart, June 1969.

+ Sobieszezanski, J., “Matrix Algorithm for Structural Modi-
fication based on the Parallel Element Concept,”” AIAA Journal,
Vol. 7, No. 11, Nov. 1969, pp. 2131-2139.

5 Sack, R. L., Carpenter, W. C., and Hatch, G. L., “Modifica-
tion of Elements in the Displacement Method,” AT4A Journal,
Vol. 5, No. 9, Sept. 1967, pp. 1708-1710.

6 Rosen, R. and Rubinstein, M. F.; “Substructure Analysis
by Matrix Decomposition,”” Journal of Structural Division ASCE,
Vol. 96, No. 8ST3, March 1970, pp. 663-670.

7 Householder, A. 8., Principles of Numerical Analysis, Mc-
Graw-Hill, New York, 1953, p. 79.

8 Kavlie, D. and Powell, G., “Efficient Reanalysis of Modified
Structures,” Journal of Structural Division ASCE, Vol. 97, No.
ST1, Jan. 1971, pp. 377-392.

Allen and Vineenti Blockage
Corrections in a Wind Tunnel

C. DavTon*
University of Houston, Houston, Texas

Introduction

N conducting wind-tunnel tests it is quite often necessary
to use cylinders (or bodies) a little larger than desirable in
order to attain the highest possible Reynolds number. Use
of the large eylinders gives rise to wall-interference effects
which, of course, influence whatever measurement is desired.
There are several techniques which might be followed so that
the wall-interference effects might be eliminated. ,
One of the most popular procedures for obtaining corrected
drag forces for a single cylinder from wind-tunnel data is due
to Allen and Vineenti.! For example, the Allen and Vincenti
(A & V) procedure has been used by Bishop and Hassan,?
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Roshko,® and Delany and Sorensen* and Achenbach? to
correct the measured drag coefficient on circular eylinders in
wind-tunnel tests. In fact, Roshko states that the A & V
procedure is the best correction method available and is be-
lieved to be fairly accurate at supercritical Reynolds numbers
where C, is nearly constant.

A recent investigation by the author led to the discovery
that the A & V method is noticeably in error when used with
relatively large-diameter circular cylinders in a wind tunnel.

Allen and Vincenti Analysis

When a cylinder is placed in & wind tunnel, the flowfield is
influenced to the extent that the unbounded plane-flow
situation is no longer modeled exactly. Allen and Vincenti!
performed an analysis which yielded the following equation
[Eq. (67) in Ref. 1] to represent the actual drag coefficient,

— 2 — M3 (1 + 0.4M?)
Ci=0Cy 11 ~ Q- M2)3”Ad — (1 — Mo Ao —
2 — MH(1 0.402
TCd’( 1)£ 11—;2 )} (1)

in which A is a shape factor and o and = are geometric factors
all tabulated in Ref. 1, C.’ is the measured drag coefficient,
and M is the apparent upstream Mach number. To explain
the terms in Eq. (1), I quote from Allen and Vincenti! that
... of the two correction terms involving A¢ in this equa-
tion, the first appears as a result of the change in dynamic
pressure occasioned by the interference between the walls and
the airfoil thickness; the second represents the effect of the
pressure gradient induced by the interference between the
walls and the wake. The correction term containing 7C,’
appears as'a result of the change in dynamic pressure caused
by the wall-wake interference.” Very good agreement with
drag data was obtained by Allen and Vincenti for eylindrical
airfoils over a range of Mach numbers and airfoil sizes.

For the case of a circular cylinder in a wind tunnel with a
negligible Mach number (M < 0.2), Eq. (1) reduces to

Co = C/{1 — 2.472(d/h)2 — 0.5C.'(d/h)} @)

in which d is the cylinder diameter and % is the wind-tunnel
width for a vertical cylinder. Equation (2) was also listed by
Roshko? in which the coefficient 2.472 was replaced by 2.5
which certainly is acceptable.

The data of Fage?® were used by Allen and Vincenti to obtain
corrected drag coefficients in Eq. (1) for flow around a circular
cylinder and an apparent computational error was made. I
have calculated from Eq. (2) the corrected drag coefficients
and in Fig. 1 a plot is shown of the uncorrected Fage data and
the drag coefficient values as corrected using Eq. (2). Super-
imposed on the figure are the corrected values as contained
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Fig. 1 Corrected and uncorrected drag coefficients as a
function of blockage.



